If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8a^2+42a+49=0
a = 8; b = 42; c = +49;
Δ = b2-4ac
Δ = 422-4·8·49
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-14}{2*8}=\frac{-56}{16} =-3+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+14}{2*8}=\frac{-28}{16} =-1+3/4 $
| −5x+4= −4x+9 | | (9x)=(8x+10) | | 10-6=-2(x+4) | | (8x-12)=(5x+18) | | g+24=30 | | 0.05(7t+6)=0.35(T-5)+2.05 | | -5x+9+24=x | | (89-6x)=(3x+62) | | 293x+3)=3(2x+2 | | 0.15(y-0.2)=20.5-(1-y) | | x+0.75=2x+0.25 | | 0=-0.005x^2+0.25x | | (5x-3)=(147-x) | | 0.05(7t+6)=0.35(T-5)+2.5 | | 85;x-41=44 |